-
偶极矩
正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做偶极矩μ=r×q。它是一个矢量,方向规定为从正电荷中心指向负电荷中心。分子偶极矩可由键偶极矩经矢量加法后得到。例如,同属于AB2型分子,CO2的μ=0,可以判断它是直线型的;可以用偶极矩表示极性大小。分子的偶极矩越大,表示分子的极性越大。
-
分子的极性
由分子中正、负电荷重心是否重合,会引起分子有、无极性的现象。由典型的金属和典型的非金属组成的气态离子型分子,正、负电荷的重心的分离程度就足够大,这是极性分子的一种极端情况。由于分子有无极性和极性大小都会影响分子间的作用力,因而分子的极性也是决定物质熔点、沸点、溶解性以及分子的电、磁性质的重要因素。
-
取向力
取向力其实质是静电力。相同元素两原子间形成的共价键为非极性键,不同元素原子间形成的共价键为极性键。极性键中,共用的电子对偏向电负性大的原子,因此电负性大的原子带部分负电荷(δ-),而电负性小的原子则带部分正电荷(δ)。H2O中H—O是极性键,它是V型结构,键的极性不能抵消,因而H2O分子有极性,是极性分子。
-
红外吸收光谱法
红外吸收光谱法简称红外光谱法。当一定频率(能量)的红外光照射分子时,如果分子中某个基团的振动频率和外界红外辐射频率一致时,光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。常用于中药化学成分的结构分析。
-
核磁共振仪
核磁共振仪广泛用于有机物质的研究、化学反应动力学、高分子化学以及医学、药学和生物学等领域。如果用一个与其能级相适应的频率的电磁辐射照射时,就会发生共振吸收,核磁共振的名称就是来源于此。50年代制造出1T特拉斯)磁场,60年代制造出2T的磁场,并利用超导现象制造出汗的超导磁体。
-
诱导力
极性分子与非极性分子相遇时,极性分子的固有偶极产生的电场作用力使非极性分子电子云变形,且诱导形成偶极子,固有偶极子与诱导偶极子进一步相互作用,使体系稳定。这种作用力为诱导力。这种作用力同样存在于极性分子间,使固有偶极矩加大。
-
非极性键
由同种元素的原子间形成的共价键,叫做非极性键。非极性键的键偶极矩为0。存在于非极性分子中的键并非都是非极性键。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。
-
极性分子
在以极性共价键结合的分子中,正、负电荷中心不重合而形成偶极,这样的分子叫做极性分子。以极性键结合的双原子分子或骨架结构不对称的多原子分子都形成极性分子。多原子分子的极性通常由键的极性和分子的空间构型两方面综合起来考虑。极性分子的极性大小用分子偶极矩μ(μ=q·d,单位为德拜D)来度量。